翻訳と辞書
Words near each other
・ Nucleoporin 155
・ Nucleoporin 160
・ Nucleoporin 188
・ Nucleoporin 205
・ Nucleoporin 210kDa
・ Nucleoporin 214
・ Nucleoporin 35
・ Nucleoporin 37
・ Nucleoporin 43
・ Nucleoporin 50
・ Nuclear Seasons
・ Nuclear Secrets
・ Nuclear Security Summit
・ Nuclear sharing
・ Nuclear shell model
Nuclear space
・ Nuclear strategy
・ Nuclear Strike
・ Nuclear strike
・ Nuclear Strike (Spooks)
・ Nuclear structure
・ Nuclear submarine
・ Nuclear Suppliers Group
・ Nuclear technology
・ Nuclear terrorism
・ Nuclear Terrorism Convention
・ Nuclear testing at Bikini Atoll
・ Nuclear thermal rocket
・ Nuclear Threat Initiative
・ Nuclear Time


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nuclear space : ウィキペディア英語版
Nuclear space
In mathematics, a nuclear space is a topological vector space with many of the good properties of finite-dimensional vector spaces. The topology on them can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector spaces whose elements are "smooth" in some sense tend to be nuclear spaces; a typical example of a nuclear space is the set of smooth functions on a compact manifold.
All finite-dimensional vector spaces are nuclear (because every operator on a finite-dimensional vector space is nuclear). There are no Banach spaces that are nuclear, except for the finite-dimensional ones. In practice a sort of converse to this is often true: if a "naturally occurring" topological vector space is not a Banach space, then there is a good chance that it is nuclear.
Much of the theory of nuclear spaces was developed by Alexander Grothendieck and published in .
==Definition==

This section lists some of the more common definitions of a nuclear space. The definitions below are all equivalent. Note that some authors use a more restrictive definition of a nuclear space, by adding the condition that the space should be Fréchet. (This means that the space is complete and the topology is given by a countable family of seminorms.)
We start by recalling some background. A locally convex topological vector space ''V'' has a topology that is defined by some family of seminorms. For any seminorm, the unit ball is a closed convex symmetric neighborhood of 0, and conversely any closed convex symmetric neighborhood of 0 is the unit ball of some seminorm. (For complex vector spaces, the condition "symmetric" should be replaced by "balanced".)
If ''p'' is a seminorm on ''V'', we write ''Vp'' for the Banach space given by completing ''V'' using the seminorm ''p''. There is a natural map from ''V'' to ''Vp'' (not necessarily injective).
If ''q'' is another seminorm, larger than ''p'', then there is a natural map from ''Vq'' to ''Vp'' such that the first map factors as ''V'' → ''Vq'' → ''Vp''. These maps are always continuous. The space ''V'' is nuclear when a stronger condition holds, namely that these maps are nuclear operators. The condition of being a nuclear operator is subtle, and more details are available in the corresponding article.
Definition 1: A nuclear space is a locally convex topological vector space such that for any seminorm ''p'' we can find a larger seminorm ''q'' so that the natural map from ''Vq'' to ''Vp'' is nuclear.
Informally, this means that whenever we are given the unit ball of some seminorm, we can find a "much smaller" unit ball of another seminorm inside it, or that any neighborhood of 0 contains a "much smaller" neighborhood. It is not necessary to check this condition for all seminorms ''p''; it is sufficient to check it for a set of seminorms that generate the topology, in other words, a set of seminorms that are a subbase for the topology.
Instead of using arbitrary Banach spaces and nuclear operators, we can give a definition in terms of Hilbert spaces and trace class operators, which are easier to understand.
(On Hilbert spaces nuclear operators are often called trace class operators.)
We will say that a seminorm ''p'' is a Hilbert seminorm if ''V''''p'' is a Hilbert space, or equivalently if ''p'' comes from a sesquilinear positive semidefinite form on ''V''.
Definition 2: A nuclear space is a topological vector space with a topology defined by a family of Hilbert seminorms, such that for any Hilbert seminorm ''p'' we can find a larger Hilbert seminorm ''q'' so that the natural map from ''V''''q'' to ''V''''p'' is trace class.
Some authors prefer to use Hilbert–Schmidt operators rather than trace class operators. This makes little difference, because any trace class operator is Hilbert–Schmidt, and the product of two Hilbert–Schmidt operators is of trace class.
Definition 3: A nuclear space is a topological vector space with a topology defined by a family of Hilbert seminorms, such that for any Hilbert seminorm ''p'' we can find a larger Hilbert seminorm ''q'' so that the natural map from ''V''''q'' to ''V''''p'' is Hilbert–Schmidt.
If we are willing to use the concept of a nuclear operator from an arbitrary locally convex topological vector space to a Banach space, we can give shorter definitions as follows:
Definition 4: A nuclear space is a locally convex topological vector space such that for any seminorm ''p'' the natural map from ''V'' to ''V''''p'' is nuclear.
Definition 5: A nuclear space is a locally convex topological vector space such that any continuous linear map to a Banach space is nuclear.
Grothendieck used a definition similar to the following one:
Definition 6: A nuclear space is a locally convex topological vector space ''A'' such that for any locally convex topological vector space ''B'' the natural map from the projective to the injective tensor product of ''A'' and ''B'' is an isomorphism.
In fact it is sufficient to check this just for Banach spaces ''B'', or even just for the single Banach space ''l''1 of absolutely convergent series.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nuclear space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.